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Considering as an example the 2A + B,—2AB reaction occurring on the surface of a spherical catalyst, we
demonstrate that heterogeneous reactions may exhibit oscillatory behavior at isothermal conditions if the
bistability of the nonoscillatory surface kinetics is combined with diffusion limitations in the gas phase.
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Oscillatory chemical reactions have been the subject of
many experimental and theoretical studies over the past 30
years. The most famous example is the Belousov-
Zhabotinskii reaction [1] occurring in the liquid phase and
exhibiting spectacular spatiotemporal color variations. More
recently, the interest has been focused on heterogeneous
catalytic reactions [2,3] [an already classical example, re-
ported first by Ertl and co-workers [4], is CO oxidation on
Pt(001)]. In both cases, the oscillatory behavior is due to
nonlinear coupling between different elementary processes.

The bulk of the systematic studies of oscillations in het-
erogeneous reactions have concerned systems where all the
important processes are occurring on a solid surface [the
physical factors behind oscillations are believed to be (i) a
coverage dependence of the activation energies for reaction
steps, (ii) empty-site requirement for the reaction, (iii) buffer
steps, (iv) oxide formation, or (v) surface reconstruction
[2,3]]. The gas-phase concentrations are then constant or cor-
respond to the conditions of the so-called well-stirred reactor
[3]. A few recent studies [5] analyze the global coupling
between surface kinetics exhibiting oscillations and mass
transport in the gas phase (the equations, employed to de-
scribe the coupling, are of the same type as those used for the
well-stirred reactor). In the present paper, we address the
question if oscillatory kinetics, under isothermal conditions,
can be produced through the global coupling of surface ki-
netics and diffusion limitations in the gas phase for the case
when the surface kinetics alone cannot produce oscillations.
According to the literature (e.g., Ref. [3(a)], p. 125), “there
is hardly any reason to believe that diffusional resistances are
causative factors of the oscillations themselves.” On the
other hand, a combination of the kinetic bistability and mass-
transport limitations in the well-stirred reactor is known to be
able to cause oscillations [2,3]. Mathematically, the diffusion
limitations near a catalyst and the mass-transport limitations
in a well-stirred reactor are described quite differently (by
partial and ordinary differential equations, respectively).
Physically, however, the feedback resulting from diffusion
limitations is qualitatively similar to that taking place in the
well-stirred reactor. Thus, in analogy with the well-stirred
reactor, one can expect that a combination of the kinetic
bistability and diffusion limitations may induce oscillations.
In this communication, we show that such oscillations are
indeed possible, even when the diffusion limitation is re-
stricted to only one reactant.

1063-651X/96/53(4)/3013(4)/$10.00 53

As an example, we consider the 2A + B,—2AB reaction
on the surface of a spherical catalyst pellet. The reaction
mechanism is assumed to be basically the same as for CO (or
hydrogen) oxidation on Pt. It involves reversible monomo-
lecular A adsorption, irreversible dissociative B, adsorption,
and A + B reaction between adsorbed species to form product
AB molecules which desorb rapidly. The corresponding
mean-field kinetic equations for the adsorbate coverages are
as follows:

dHA/dt=k1PA(l~0A)—k29A—k30A0B, (1)
dOpldi=k,Pp (1— 04— 05)*— k30,05, )

where P, and Pjp are the reactant pressures, and &k, k,,
ks, and k, the rate constants for elementary steps. Equation
(2) describes that preadsorbed A particles inhibit dissociative
adsorption of B, molecules (through the second order term).
On the other hand, no such site-blocking effect is exerted by
adsorbed B particles for incoming A molecules [no 65 in the
parentheses of Eq. (1)].

Elementary steps of surface reactions exhibiting oscilla-
tions are usually fast. With reasonable values of the rate con-
stants (Table I), the typical reaction rate is about 10° mono-
layers per second (ML/s) (in the absence of mass-transfer
limitations). To describe oscillations under such conditions,
we need in fact only the steady-state solutions to Egs. (1) and
(2) (the steady-state approximation for rapid steps is com-
mon in the theory of chemical oscillations [1]). The most
interesting property of these solutions is bistability (Fig. 1).
For a given pressure P4, the steady state is unique at suffi-
ciently low and high pressures Pg , respectively. At medium

B, pressures, P%zsPstPll;Z, Egs. (1) and (2) have three
solutions, of which the intermediate one (with respect to ab-
solute coverage) is unstable and the other two are stable. At
T=500 K and P,=1 bar (Fig. 1), the critical B, pressures
are Py =0.11 bar and Py =0.29 bar.

The term “‘stable” in the paragraph above corresponds to
the mean-field approximation which does not take into ac-
count fluctuations of adsorbate coverages due to surface dif-
fusion (as discussed in Refs. [6,7]). In our analysis, the
‘““stable” nonunique solutions are considered to be really
stable during the period of oscillations. This assumption is
correct if the rate of formation of critical nuclei in the ad-
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TABLE I. Input data for simulations of oscillatory kinetics of
the 2A + B,—2AB reaction: . are the rate constants for the reac-
tant fluxes, s the sticking coefficients, v the preexponential factors,
and E the activation energies. Note that the activation energy for
A desorption rapidly decreases with increasing 6, (this point is
essential in order to reproduce realistic bistable kinetics at atmo-
spheric pressures [9]).

Pellet radius: R=1 cm

Number of active sites: No=10'* cm ~
Reaction conditions: 7=500 K,
P,=1 bar, P32:0-5 bar

Gas-phase diffusion coefficients:
D,>0.1cm®s™!, Dy =05 cm® s~
A adsorption: k=s,4.%,

F,=10% s~ bar ™!, 5,=0.001

B, adsorption: k4=532.%32
FHp,=10° s~ bar ™!, 55 =0.01

A desorption: ko

va=10% s, E,=35—-106, kcal/mol
A+ B reaction: k3

v,=10" s 1, E,=12 kcal/mol

2

sorbed overlayer is low. The best argument in favor of sta-
bility of the mean-field solutions is that bistable kinetics are
really observed experimentally [7] (for some additional argu-
ments, see Ref. [8]).

To describe mass transfer in the course of reaction, we
need to solve the time-dependent three-dimensional (3D) dif-
fusion equations (with spherical symmetry) for the gas-phase
concentrations n,(r,t) and nBZ(r,t) with the following

boundary conditions at ¥=R (R is the pellet radius):

Iny dng,

D,——= Dy —=
A W Py

where D, and D B, are the diffusion coefficients, and W(z) is

the reaction rate (the number of AB molecules produced per
unit area per second) calculated by employing the steady-
state approximation for Eqs. (1) and (2) with local A and
B, pressures.

To elucidate the evolution of the gas-phase concentra-
tions, we recall that the steady-state solution to the 3D dif-
fusion equation,

n(r)=n(R)+[n*—n(R)](r—R)/r,

yields the following expression for the diffusion flux near the
surface:

J=D[n*—n(R)]/R, ?3)

where n* is the concentration at R—oo. The maximum flux,
Jmax=Dn*/R, corresponds to n(R)=0. Comparing J,,,,
and W, one can judge if the diffusion limitations are impor-
tant or not.

In our simulations, diffusion limitations are assumed only
for one reactant (for B, molecules). Diffusion of A mol-
ecules is considered to be rapid (D nf/R>W), and no A
concentration gradients are consequently established. In this
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FIG. 1. (a) Reaction rate and (b) surface coverages as a function
of B, pressure for P, =1 bar [according to the steady-state solution
of Egs. (1) and (2) with the rate constants presented in Table I].
Lines CD and EB in panel (a) correspond to the stepwise changes
in the reaction rate in the course of oscillations (cf. Fig. 2).

case, the necessary conditions for generation of oscillations
can be obtained by analyzing Fig. 1(a) in combination with
Eq. (3) for B, molecules. First, we note that the B, pressure
far from the surface should be larger than Péz. The latter

makes it possible (through gradients in n B,) to reach all the

bistable points and to create oscillations, provided that the
kinetic parameters are of suitable magnitude. For example,
let us consider that the B, pressure in the reactant mixture
corresponds to the point A in Fig. 1(a) and that in the initial
moment there are no concentration gradients (i.e., the local
B, pressure is the same as in the reactant mixture). In this
situation, the reaction rate is high (about 10° ML/s), i.e., the
system is in the high-reactive state. With increasing time, the
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local B, pressure will decrease due to rapid consumption and
limited transport of B,. Thus, the system will move to the
left along the line AC [Fig. 1(a)]. In order to produce oscil-
lations, we need to reach the point C, where a kinetic phase
transition will occur to D, i.e., to the low-reactive state.
Physically, this means that the diffusion limitations on the
line AC must be so strong that the steady-state diffusion flux
is not able to maintain the high-reactive state. Mathemati-
cally, this requirement is expressed as

Dy, (nf —np YIR<W,0,02, (4)

where nj,‘fz and ng2 are the concentrations corresponding to
pressures P B, and P%Z, and W,,, . is the reaction rate in the

high-reactive state (this rate is in fact constant along the line
AC and we do not need to refer to the point where it is
calculated). The left-hand part of Eq. (4) yields the steady-
state diffusion flux provided that the pressure near the sur-
face equals sz [cf. Eq. (3)]. The right-hand part is the rate

of consumption of B, (the factor 2 takes into account the
reaction stoichiometry).

If the system reaches point C, the reactive state becomes
kinetically unstable, and we will have a very rapid transition
from point C to point D (in the steady-state approximation,
this transition is regarded as instantaneous) and the system
will then be in the low-reactive state. Here, the consumption
of B, is much less and the local B, concentration will re-
cover. The system then starts to move along the line DE
immediately after the kinetic phase transition C— D and will
eventually reach the point E. The condition for this path is
that the diffusion limitations of B, are not too severe, i.e.,

Dy, (nf,=np JIR>Wl2, )

where Wy is the reaction rate corresponding to the point E.
If this condition is met, all the points on the line DE are
unstable with respect to gas-phase diffusion and the system
does reach the point E. Then, we will have a very rapid
transition from E to B, i.e., the system will again be in the
high-reactive state and will proceed along B— C. Conse-
quently, we have reached a state of repeated oscillations
along B—C—D—E—B.

To elucidate in more detail the phenomenon described, it
is instructive to construct an analytical solution to the prob-
lem under consideration and to estimate the period of oscil-
lations. The latter is possible provided that the reaction rate
in the high-reactive state is much higher than in the low-
reactive state and also much higher than the average diffu-
sion flux toward the surface (in this case, the reactive period
becomes short compared to the unreactive one).

Let us first consider the evolution of the system along the
line BC. Just after the transition from £ to B, the B, con-
centration near the surface equals n };2 and the concentration

gradients are relatively weak (because the reaction rate dur-
ing the low-reactive period along D— E was low). For the
motion along B— C, the reaction rate is high and accord-
ingly the B, concentration will rapidly decrease near the sur-
face. The size of this B,-depleted region is low compared to
the pellet radius. The latter makes it possible to use the 1D
diffusion equation to describe the high-reactive period of os-
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cillations. An additional point simplifying the analysis is that
the reaction rate is nearly constant during the high-reactive
period, i.e., W=W,, . along B— C. In this case, the relevant
solution to the 1D diffusion equation is given by

t
np (¥, 0) =1, = Winar | Glx,t=1)d1, (6)

where x and ¢ are the space and time coordinates (x=0
corresponds to the surface, and r=0 refers to the beginning
of the active period), and

G(x,1)=(4mDp 1)~ "exp(—x*/4Dp 1)
is the Green function. Near the surface, Eq. (6) yields
np,(0.0)=np — W (t/mDg )" (7

Employing this equation and that n BQ(.O,I) = n%2 at the end of

the reactive period, we obtain for the duration of this period
T+= 7TD82(An/Wmax)2’ (8)

_,1 _ 0
where An=np —np .

The length of the low-reactive period, 7_, can be calcu-
lated from the balance equation for the mass transfer

Wmax T+ + Wlowa = 2<JBZ>( T+ + 7'—), (9)

where W,,,,=(Wp+ Wg)/2 is the average reaction rate dur-
ing the low-reactive period (W, and Wy are the reaction
rates at the points D and E, respectively),
(JBZ>=DB°[n§2—<nBZ(R)>]/R the average diffusion flux
[cf. Eq. (3)], and (nBZ(R))z(ng2+n11,2)/2 the average B,
concentration near the surface. Using Eq. (9), we get

T—:T+(Wmax~2<JBz>)/(2<‘]Bz>_Wlnw)- (10)

Equation (8) indicates that 7, is independent of geometry.
This conclusion is correct if the reaction rate during the high-
reactive period is much higher than the average diffusion
flux. In reality, these values are often comparable. In the
latter case, 7, will depend on R, but this dependence is
expected to be weak. On the other hand, the dependence of
7_ on R is relatively strong because (J/,) in Eq. (10) is

dependent on R. To estimate 7_ in the 1D or 2D cases, one
can also use Eq. (10) (the only difference is that in the ex-
pression for (J Bz> one should replace R by the length char-

acterizing the concentration gradients in the case under con-
sideration).

Typical oscillatory kinetic curves obtained by numerically
integrating the diffusion equation for the B, concentration
(we employed the Crank-Nicholson method [10]) are shown
in Fig. 2. In this example, the calculations indicate that the
reactive and unreactive periods are 0.38 and 1.14 s, respec-
tively. On the other hand, Egs. (8) and (10) yield 7., =0.11
and 7_=0.22 s. Thus, the analytical estimates are in reason-
able agreement with numerical calculations (the difference is
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FIG. 2. Reaction rate and B, pressure near the surface as a
function of time (according to numerical calculations with param-
eters presented in Table I).

connected with the fact that for the chosen set of parameters
the reaction rate in the high-reactive state is comparable with
the average diffusion flux).

Changing the values of the governing parameters, we may
reach regions where the necessary conditions for generation
of sustained oscillatory kinetics are not fulfilled. Our numeri-
cal studies, which will be presented elsewhere [11], show
that in these regions one can obtain damped oscillations
(with increasing time, the period of oscillations monotoni-
cally increases and then they disappear).
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Above, we analyzed oscillatory kinetics resulting from
mass-transfer limitations for B, molecules only. Diffusion of
A molecules was considered to be rapid. If the transport of
A is also limited significantly, but not too strongly (i.e., com-
parable to that for B,), oscillatory kinetics are still possible
as demonstrated by our numerical studies. On the other hand,
if B, diffusion is very fast, one can verify that oscillations
are always lacking for the kinetics given by Eqgs. (1) and (2).

Our study identifies a type of isothermal oscillatory
chemical reactions, caused by the coupling of nonoscillatory
surface kinetics with diffusion limitations in the gas phase.
The phenomenon may be searched for in real systems exhib-
iting bistability. Referring to Fig. 1(a), we note that a favor-
able condition is when the gas mixture is deficient in B,
(from a stoichiometry point of view). Exploring CO or hy-
drogen oxidation on Pt (when CO or H, are identified with
A, and O, with B, [7]), we find that the mass-transfer limi-
tations for O, are minor compared to those for CO or H,
(because the bistability occurs in large oxygen excess) and
conclude that the mechanism described is not expected to
show up in these systems. The conditions for diffusion-
driven isothermal oscillations should thus be looked for in
other rapid heterogeneous reactions.

We finally note that the type of oscillatory behavior iden-
tified need not be restricted to a catalytic reaction, which was
the explicit example used above. Reactions between two or
more reactants where the kinetics is confined to a surface and
transport is occurring through a surrounding gas or liquid are
much more general. Examples are chemical vapor deposition
and other layer growth processes at surfaces, surface etching,
electrochemistry and regulatory processes at biological sur-
faces, to name a few.
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